工作軌道
按照工作軌道區分,衛星通信系統一般分為以下3類:
2.1.1、低軌道衛星通信系統(LEO):
距地面500—2000Km,傳輸時延和功耗都比較小,但每顆星的覆蓋范圍也比較小,典型系統有Motorola的銥星系統。低軌道衛星通信系統由于衛星軌道低,信號傳播時延短,所以可支持多跳通信;其鏈路損耗小,可以降低對衛星和用戶終端的要求,可以采用微型/小型衛星和手持用戶終端。但是低軌道衛星系統也為這些優勢付出了較大的代價:由于軌道低,每顆衛星所能覆蓋的范圍比較小,要構成全球系統需要數十顆衛星,如銥星系統有66顆衛星、Globalstar有48顆衛星、Teledisc有288顆衛星。同時,由于低軌道衛星的運動速度快,對于單一用戶來說,衛星從地平線升起到再次落到地平線以下的時間較短,所以衛星間或載波間切換頻繁。因此,低軌系統的系統構成和控制復雜、技術風險大、建設成本也相對較高。
2.1.2、中軌道衛星通信系統(MEO):
距地面2000—20000Km,傳輸時延要大于低軌道衛星,但覆蓋范圍也更大,典型系統是國際海事衛星系統。中軌道衛星通信系統可以說是同步衛星系統和低軌道衛星系統的折衷,中軌道衛星系統兼有這兩種方案的優點,同時又在一定程度上克服了這兩種方案的不足之處。中軌道衛星的鏈路損耗和傳播時延都比較小,仍然可采用簡單的小型衛星。如果中軌道和低軌道衛星系統均采用星際鏈路,當用戶進行遠距離通信時,中軌道系統信息通過衛星星際鏈路子網的時延將比低軌道系統低。而且由于其軌道比低軌道衛星系統高許多,每顆衛星所能覆蓋的范圍比低軌道系統大得多,當軌道高度為l0000Km時,每顆衛星可以覆蓋地球表面的23.5%,因而只要幾顆衛星就可以覆蓋全球。若有十幾顆衛星就可以提供對全球大部分地區的雙重覆蓋,這樣可以利用分集接收來提高系統的可靠性,同時系統投資要低于低軌道系統。因此,從一定意義上說,中軌道系統可能是建立全球或區域性衛星移動通信系統較為優越的方案。當然,如果需要為地面終端提供寬帶業務,中軌道系統將存在一定困難,而利用低軌道衛星系統作為高速的多媒體衛星通信系統的性能要優于中軌道衛星系統。
2.1.3、高軌道衛星通信系統(GEO):
距地面35800km,即同步靜止軌道。理論上,用三顆高軌道衛星即可以實現全球覆蓋。傳統的同步軌道衛星通信系統的技術最為成熟,自從同步衛星被用于通信業務以來,用同步衛星來建立全球衛星通信系統已經成為了建立衛星通信系統的傳統模式。但是,同步衛星有一個不可克服的障礙,就是較長的傳播時延和較大的鏈路損耗,嚴重影響到它在某些通信領域的應用,特別是在衛星移動通信方面的應用。首先,同步衛星軌道高,鏈路損耗大,對用戶終端接收機性能要求較高。這種系統難于支持手持機直接通過衛星進行通信,或者需要采用l2m以上的星載天線(L波段),這就對衛星星載通信有效載荷提出了較高的要求,不利于小衛星技術在移動通信中的使用。其次,由于鏈路距離長,傳播延時大,單跳的傳播時延就會達到數百毫秒,加上語音編碼器等的處理時間則單跳時延將進一步增加,當移動用戶通過衛星進行雙跳通信時,時延甚至將達到秒級,這是用戶、特別是話音通信用戶所難以忍受的。為了避免這種雙跳通信就必須采用星上處理使得衛星具有交換功能,但這必將增加衛星的復雜度,不但增加系統成本,也有一定的技術風險。
目前,同步軌道衛星通信系統主要用于VSAT系統、電視信號轉發等,較少用于個人通信。
通信范圍
按照通信范圍區分,衛星通信系統可以分為國際通信衛星、區域性通信衛星、國內通信衛星。
用途區分
按照用途區分,衛星通信系統可以分為綜合業務通信衛星、軍事通信衛星、海事通信衛星、電視直播衛星等。
轉發能力
按照轉發能力區分,衛星通信系統可以分為無星上處理能力衛星、有星上處理能力衛星。